Synthesis procedure and Physico-chemical characterization of supported Molybdenum oxide catalysts

Abdelhadi S. Benhmid a, Khaled M. Edbey a, Ali F. Bukhzam a, Hend M. Alhowari a, Gamal. A. Mekhemer b, Mohamed I. Zaki b

aChemistry department, Faculty of Science, Benghazi University, P.O. Box - 1308 Benghazi, Libya
bChemistry department, Faculty of Science, Minia University, El- Minia, Egypt

Abstract
A series of alumina and silica supported molybdenum oxide catalysts has been prepared using ammonium heptamolybdate over a wide range of loading levels (3 – 20 wt%) of molybdenum oxide) by the wet impregnating method. For a better understanding of the catalytic behaviour of the catalysts, the catalysts were characterised using different techniques like, XRD, FT-IR spectroscopy and Laser Raman spectroscopy. The XRD results of alumina supported molybdenum oxide exhibits the crystallinity of catalysts and particle size was found to increase with increasing the loading level of molybdenum oxide. The similar effect was observed in case of sulfated alumina supported molybdenum oxide [xMoAlS]. However the XRD results in case of silica supported molybdenum oxide exhibits high dispersion at low loading level (3 and 5 wt%). The FT-IR results revealed that the dispersion capacity of molybdenum oxide from MoAlS is larger than of molybdenum oxide from MoAl. However, the ex-situ FT-IR spectra of MoSi and MoSiS catalysts showed that the dispersion capacity of molybdenum oxide from MoSiS is bigger than of molybdenum oxide from MoSi. Laser Raman spectroscopy studies demonstrated that there are at least three different molybdenum oxide species (tetrahedral and octahedral coordinated surface species as well as a crystalline MoO3 phase) present on the Al2O3 surface under ambient conditions and that their relative concentrations depend on the molybdenum oxide coverage. Laser Raman Spectroscopy of xMoAl catalysts indicated that the formation of molybdenum oxide of higher bond order in xMoAlS catalysts than in xMoAl catalysts.

1. Introduction
Molybdena catalysts have been used for quite a long time. The term molybdena is used here to denote a composite catalyst consisting of molybdenum oxide supported on an activated support, commonly alumina. In early time, it was found that certain transition metals, particularly cobalt and nickel, promote the molybdena catalyst for hydrodesulfurization (HDS) reactions. Cobalt molybdate catalyst has been used much in the petroleum industry for hydrotreating and hydrodesulfurization. More recently, these catalysts have been employed in chemical, petroleum, coal liquefaction, and pollution control industries (Mathew et al., 2006; Haber et al., 1981; El-Sharkawy et al., 2007).

Transition metal oxides supported on oxide carriers are used specifically in the field of selective oxidation reactions. These catalysts are typically prepared by deposition of catalytically active molybdenum oxide component on the surface of an oxide support (TiO2, Al2O3, ZrO2, SiO2, and MgO). The excessive flexibility of supported Mo-catalysts is related to the different molecular structures that molybdenum species can simultaneously possess when supported and to the ability of Mo atom to assume various oxidation states, depending on the pre-treatment and/or the reaction atmosphere (Mathew et al., 2006). It is well-known catalysts based on multi component oxides exhibit a better performance rather than when component oxide were used separately (Thiemann et al., 2011). Molybdenum supported on oxides such as γ-alumina, silica and alumina-silica is widely used in such petroleum refining processes as Hydro treating or Hydro cracking (Banares et al., 1994).

Alumina is very commonly used support for molybdenum. In recent years, alumina supported catalysts have attracted appreciable attention due to their industrial and technological application. Many studies devoted for understand the nature of interaction of molybdenum species with alumina support (Mathew et al., 2006; Mulcahy et al., 1990; Spanose et al., 1990).

The molybdena has a very high dispersion in MoO3/γ-Al2O3 catalysts. The molybdena forms monolayer on γ-Al2O3 surface. During the impregnation and calcination steps, the molybdena is fixed on Al-OH groups forming Al-O-Mo bonds (Ng et al., 1985). In the presence of low amounts of MoO3 (≤ 4 wt%) the formation of isolated, tetrahedrally coordinated [MoO4]2− species is preferred. High molybdena loadings or thermal treatment favours the formation of polymeric molybdate structures in which the Mo(VI) ion is octahedrally coordinated.

Previous studies have shown that catalytic properties may depend on the molybdenum oxide structure as well as the choice of the support material (Banares et al., 1995; Leyerer et al., 1990). For a detailed understanding of supported molybdenum oxide catalysts one strategy may be to separate the effects of molybdenum oxide structure from those of support material. Silica seems to be...
the material of choice considering its weak interaction with molybdenum oxide. The relatively inert of silica the detailed state of the deposited supported molybdenum oxide may still depend on variety of parameter such as silica material and its pre-treatment, the synthesis procedure. For highly dispersed molybdenum oxide supported on silica a hydrated and a dehydrated state have to be distinguished.

The hydrated state is present when the sample is revealed to moisture under ambient condition. If the sample is treated in dry synthetic air at elevated temperature (≥350°C), the molybdenum oxide is converted into a dehydrated state (Leyrer et al., 1986). Generally, it has been found that alumina-supported MoO₃ catalysts of a high dispersion can be obtained up to high loadings, however the formation of MoO₃ crystallites occurs at significantly lower loadings in case of SiO₂ supported catalysts (Kakuta et al., 1988; Sarrazin et al., 1989). The difference in interaction between the metal precursor (usually from ammonium heptamolybdate (AHM)), dissolved in water and the alumina and silica supports brings about the difference in dispersion. The interaction between the precursor and the support depends on the sign of the surface charge of the support and of the dissolved complexes of precursor. It has been observed that the interaction between the anionic heptamolybdate clusters and the positively charged Al₂O₃-surface is better than between the clusters and the SiO₂-surface, which is negatively charged. This is leads to spreading of the molybdyla phase over Al₂O₃. Because of the lack of interaction between heptamolybdate and SiO₂ formation of MoO₃ crystallites in MoO₃/SiO₂ catalyst occurs at low loading (Kakuta et al., 1988; Sarrazin et al., 1989; Stencil et al., 1986). During drying and calcination, these crystallites have a tendency to more coalescence due to the high solubility of hexavalent molybdenum species in water, and volatility of MoO₃(OH)₂. Subsequently, the dispersion of silica–supported catalysts is not very stable and usually these catalysts show bulk MoO₃ feature in catalytic test reaction.

However, there is still significant scope for the determination of the physicochemical properties, the nature of the support and its pore structure. Other parameters such as the loading level of the active component and the nature and concentration of promoters will be of interest. In order to achieve these objectives, the following steps are carried out:

- Preparation of supported molybdena at various loading levels using two different supports (SiO₂ and Al₂O₃) by the impregnation method, subsequent drying at 120°C and calcinations at 600°C in air.
- Characterization of surface structures assumed by the supported molybdena species by means ex-Situ FT-IR, Laser Raman Spectroscopy and XRD.

2. Experimental

2.1. Catalyst preparation

High purity ammonium heptamolybdate (NH₄)₆MoO₂₄.4H₂O, Merck, was used as precursor for supported and unsupported MoO₃ catalysts. High surface area (100 ± 10 m²/g) aluminium oxide of Degussa AG (Frankfurt, Germany) was used as carrier for supported catalysts. The material bulk was examined by x-ray diffractometry to assume a crystalline structure similarly large to that of γ-modification (ASTM Card No. 10-425). Silica (200 ± 10 m²/g), the other catalyst support material, was also a Degussa product. It is commercially known as Aerosil-200. According to the manufacturer, it is void of particle porosity. In addition, it is amorphous to x-ray diffractometry.

2.1.1. Unsupported molybdenum oxide

Unsupported molybdenum oxide was obtained by calcinations of ammonium heptamolybdate (AHM) at 550°C in a static atmosphere of air for 3 h.

2.1.2. Supported molybdenum oxide

Supported molybdenum oxide samples were prepared by wet impregnation method (Simionato et al., 2003), using alumina and silica as support materials and aqueous solution of AHM as the impregnating solution. The impregnation solution was prepared by dissolving a calculated amount of the precursors AHM of the required loads 3, 5, 10, 15 and 20 wt% MoO₃ in the final supported oxide materials in a suitable volume of distilled water (50 cc/g support).

The support powder particles were sprayed slowly onto the impregnation solution, while being continuously stirred. The free water was removed by evaporation at 120°C for 1 h. The AHM impregnated support material thus yield was dried at 120°C for 24 h in an oven. Supported molybdenum oxide on alumina (xMoAI) and silica (xMoSi) were obtained by calcinations at 550°C for 3 h in air of the corresponding impregnated supports. The resulting catalysts were kept dry on CaCl₂ until further use. For convenience, the various catalysts are denoted below by 3MoAl indicates the 3 wt%-MoO₃ loaded alumina supported molybdenum oxide catalyst, whereas 3MoSi indicates the 3 wt%-MoO₃ loaded silica supported molybdenum oxide catalyst.

Sulfated catalysts were prepared from alumina and silica supported MoO₃ catalysts (xMoAl and xMoSi) by impregnation with ammonium sulfate. The impregnation was carried out by immersing the dried supported catalysts (xMoAl or xMoSi) in an aqueous solution containing a desired amount of (NH₄)₂SO₄ and evaporating to dryness, followed by calcining similarly as in case of supported catalysts. The supported catalysts promoted with sulfate were designated as xMoAl/S or xMoSi/S. The amount of sulfate adsorbed on supported catalysts after impregnation and before calcinations is approximately 6 wt% SO₄²⁻.

2.2. Characterization of catalysts

All the catalytic materials as prepared in the previous sections were thoroughly characterized for their surface and bulk properties by appropriate techniques as indicated below:

Crystallinity and particle size by Powder X-ray diffraction (PXRD), dispersion capacity by Fourier Transform Infrared spectrophotometry (FTIR) and molecular composition and structure within a species by Laser Raman spectroscopy

2.2.1. X-ray diffraction

The X-ray powder diffractometry patterns were obtained, using Ni-filtered CuKα radiation (λ=1.54056 Å); on a JX-60 PA Jeol X-ray spectrometer. The generator at 35 KV and 20 mA, and the diffractometer at 2θ diverging and receiving slits and at a scan rate of 20 mm/min. The sample ground to a particle size less than 44 μ and packed into the wall of a sample holder, and then mounted in a horizontal position. We identified the crystalline phases by referring to the ASTM data files (Smith, 1960). Crystallite sizing (D₅₀) was carried out using the line broadening technique in conjunction with Scherrer’s formula (Mercera et al., 1990).

2.2.2. Fourier Transform infrared spectroscopy

The Fourier Transform Infrared spectrophotometry, the Ex-situ FT-IR spectra of supports, unsupported and supported catalysts were taken at frequency range 4000–400 cm⁻¹ with 4 cm⁻¹ resolution using a Genesis–II FT-IR Mattson spectrophotometer (USA) and an online PC with win first Lite (V 1.02) software for spectra acquisition and handling. The spectra were taken for thin (>20 mg/cm) lightly loaded (>1 wt%) wafer of KBr–supported test samples. About 1–2 mg of the catalyst as a fine powder was mixed well with spectrophotometry pure KBr powder and was finally ground in agate mortar.

2.2.3. Laser Raman spectroscopy

The Laser Raman spectroscopic experiments, ca. 90 mg of the catalyst was pressed into pellets, of 5 mm diameter and 0.8 mm
The sample was constant. The – at different loading levels are discussed. The data obtained from XRD indicated that the presence of sulfate ion found to enhance the formation of MoO₃ at low loading level (3MoAl). In addition, the particle size of these catalysts increases with increasing of molybdena content (Table 1).
3.1.2. XRD of silica supported molybdenum oxide

X-ray powder diffraction of pure silica and silica supported molybdenum oxide (xMoSi) at different loading levels are shown in Fig. 3. The XRD patterns of silica displays a broad peak due to non-crystalline silica (amorphous). The diffractograms of 3MoSi displays dominantly peak due to support (silica), and well-defined peaks that can be found in the diffractogram of MoO₃. It was observed that the MoO₃ species was highly dispersed on silica at 3 and 5 wt% loaded. This result indicates that molybdena species are not crystallized but highly dispersed or exist as an amorphous phase without possibility to know if the absence of any diffraction peak was due to absence of long-range order of MoO₃ or to low amount of MoO₃ to observe diffraction (Aritani et al., 2001; Gervasini et al., 2012). While at higher loading levels (10 wt%) the formation of MoO₃ bulk starts to be appeared. The formation of bulk molybdena increases with increasing the loading levels.

![Fig. 3. X-ray powder diffractograms for xMoSi catalysts. Diffractograms of the support and unsupported MoO₃ are inset for comparison.](image)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Particle size (D=1 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoO₃</td>
<td>38.4</td>
</tr>
<tr>
<td>10MoSi</td>
<td>25.4</td>
</tr>
<tr>
<td>15MoSi</td>
<td>28.3</td>
</tr>
<tr>
<td>20MoSi</td>
<td>33.4</td>
</tr>
<tr>
<td>10MoSiS</td>
<td>23.3</td>
</tr>
<tr>
<td>15MoSiS</td>
<td>25.8</td>
</tr>
<tr>
<td>20MoSiS</td>
<td>31.4</td>
</tr>
</tbody>
</table>

Table 2

Particle size obtained from XRD data of silica supported molybdenum oxide at different loading levels and sulfated catalysts

3.2. Ex-situ FT-IR spectra of catalyst

The Ex-situ FT-IR spectra of alumina supported molybdenum oxide and silica supported molybdenum oxide are discussed below.

3.2.1. Ex-situ FT-IR spectra of alumina supported molybdenum oxide

Ex-situ FT-IR spectroscopic analysis of the supported catalysts were performed to get deep insight about the surface molybdenum oxide. Fig. 5 provides a comparison of the IR spectra obtained for the xMoAl samples, with those exhibited by alumina and molybdenum oxide. The spectrum of pure alumina displays two broad absorptions centered at 760 and 569 cm⁻¹ in common. These frequencies may attribute to the Al-O lattice vibrations of Al₂O₃ (Gadsden et al., 1975).

![Fig. 4. X-ray powder diffractograms for xMoSiS catalysts. Diffractograms of support and unsupported MoO₃ are inset for comparison.](image)

![Fig. 5. FT-IR transmission spectra obtained for molybdenum oxide, the indicated set of alumina supported molybdenum oxide.](image)
range 828, 760 and 569 cm$^{-1}$ with Mo=O band in supported catalysts (Henker et al., 1991), association of Mo-O with Al-O was clearly indicated by the intensity and shift of bands in the lower region (Mathew et al., 2006).

The IR spectra of sulfated xMoAlS catalysts (Fig. 6), shows the similar spectra of xMoAl in Fig. 5, the difference in spectra of xMoAlS loading level of sulfated xMoAl increase become much strong absorptions at 928, 614 and 558 cm$^{-1}$, which resembling those shown for MoO$_3$ surface species in the spectra of alumina supported molybdenum oxide and intensity of three bands are more intense than the spectra of xMoAl catalysts. This indicates that the formation of molybdenum oxide of higher bond order in xMoAlS than in xMoAl. Hence, the above IR spectral results are in a good agreement with the XRD results. By increasing the loading level of molybdenum oxide on alumina the crystallinity of MoO$_3$ increases dramatically. All the results discussed above clearly shows the dispersion capacity of molybdenum oxide from MoAlS is larger compared with molybdenum oxide from MoAl.

3.2.2. Ex-situ FT-IR spectra of silica supported molybdenum oxide

Ex-situ FT-IR spectroscopic analysis of the supported catalysts were performed to get deep information about the surface molybdenum oxide. Fig. 7 provides a comparison of the IR spectra obtained for the xMoSi samples, with those exhibited by silica and molybdenum oxide. IR spectrum of pure silica display one broad absorption band centered at 1090 cm$^{-1}$, and the other two absorption bands centered at 795 and 499 cm$^{-1}$. These frequencies attributed to the Si-O lattice vibrations of SiO$_2$. Water shows an intense characteristic broad absorption band centered at 3450 cm$^{-1}$ assigned to O-H stretching in H-bonding (Beganskiene et al., 2004). IR spectrum display strong absorption at 499 cm$^{-1}$ due to Mo-O lattice vibrations of molybdena phase (Al-Hajji., 2003). As the loading level of molybdenum oxide is increased, the absorption gradually narrow with the emergence of much strong absorption resembling the shown for MoO$_3$ surface species in the spectra of silica supported molybdenum oxide (Fig. 7). The intensities of these vibration bands increase with increasing the loading level of molybdenum oxide due to the increase in the formation of MoO$_3$. There is an overlapping of Si-O bending vibration band in the range 795 cm$^{-1}$ with M=O band in supported catalysts. The IR spectra of the sulfated, xMoSiS, samples (Fig. 8) is similar to the spectra of MoSi, which are shown in Fig. 7, with differences in an intensity absorption exhibits increase in absorption with increase of loading of xMoSiS in range 499 cm$^{-1}$, the increase in intensity is indicated to increase in formation of MoO$_3$. Hence, the above IR spectral results in a good agreement with the XRD results. It has been noted that by increasing the loading level of molybdenum oxide on silica the crystallinity of MoO$_3$ dramatically increases.

3.3. Laser Raman spectra of catalysts

Laser Raman spectroscopic analysis of the supported catalysts were performed to get deep information about the surface of molybdenum oxide.

3.3.1. Laser Raman spectra of alumina supported molybdenum oxide catalysts

The result of the Laser Raman spectra obtained for the xMoAl samples at different loading levels presented in Fig. 9. All catalysts display bands at 956 cm$^{-1}$ (Mo=O stretching) at low molybdenum loading (5MoAl) tetrahedally coordinated species (MoO$_4^{2-}$) are present as small amount. With increasing the MoO$_3$ loading (10 MoAl) formation of new bands appear at 222 and 356 cm$^{-1}$ to
375 cm⁻¹ (Mo=O bending) and 834, 900 cm⁻¹ (asymmetric Mo-O-Mo stretching) and shift to higher values of bands 956 and 997 cm⁻¹ this shift can be attributed to a decrease in the bond strength of O-Mo-O groups that are joined to the support, because the high surface density of MoO₃ species present in this catalyst, while at moderate loadings (between 5 and 20 wt% MoO₃), tetrahedrally coordinated MoO₃ species are present at 5MoAl catalyst (Mathew et al., 2006). Moreover, with increasing the amount of molybdenum oxide at 10MoAl the octahedrally coordinated species can be observed or more crystalline. The Raman spectra of sulfated, xMoAlS catalysts (Fig. 9) shows the similar spectra of xMoAl, but the difference in spectra of xMoAlS loading level become much strong absorptions at 853, 900 and 956 cm⁻¹, which resembling those shown for MoO₃ surface species in the spectra of alumina supported molybdenum oxide, and intensity of three bands are more intense than the spectra of xMoAl catalysts. This indicates that the formation of molybdennum oxide of higher bond order in xMoAlS catalysts than in xMoAl.

The Raman spectra of the sulfated, xMoAlS catalysts (Fig. 10) shows a comparison of the Laser Raman spectra obtained for the xMoSi samples, with those exhibited by silica and molybdenum oxide. At low loading (5MoSi), the presence of MoO₃ as a dispersed on the surface of 5MoSi exhibits two small vibrational bands at 816 and 992 cm⁻¹ of molybdena. The appeared bands indicate that they have small effect on the formation of molybdenum oxide (Boer et al., 1991). By increasing MoO₃ loaded for 10 wt% become more intensive with increasing of intensity and new bands appears at 216 and 241 cm⁻¹. The new bands can be assigned to molybdenyl bending as isolated and the Mo=O stretching mod shifts from 281 to 289 cm⁻¹ and at 666 cm⁻¹ (the shift and the change of band shape of the molybdenyl vibration can be interpreted as an indication that the two bands belong to at least two different contribution of the present molybdenum oxide species) and the presence of two sharp bands indicates that the surface molybdenum oxide species (Thielemann et al., 2011; McEvoy et al., 2005). At higher loading levels the characteristic bands of crystalline MoO₃ are clearly observed.

The Raman spectra of the sulfated, xMoSiS catalysts (Fig. 10) display similar to the spectra of MoSi with differences in an intensity absorption exhibits increase in absorption and sharper with increase loading of xMoSiS in range 816 and 992 cm⁻¹ indicates increase in formation of MoO₃ crystalline. Hence, the above IR spectral results are in a good agreement with the XRD results. By increasing the loading level of molybdenum oxide on alumina the crystallinity of MoO₃ increases dramatically. All the results discussed above clearly shows the dispersion capacity of molybdenum oxide from MoAl is larger compared with molybdenum oxide from MoAl. Whereas FT-IR spectroscopic results were revealed that the dispersion capacity of molybdenum oxide from MoAl is larger than of molybdenum oxide from xMoAl catalysts. The laser Raman Spectroscopy results of xMoAl catalysts clearly show the formation of molybdenum oxide of higher bond order in xMoAl catalysts than in xMoAl catalysts.

Fig. 9. Laser Raman spectra of alumina supported molybdenum oxide catalysts with sulfated xMoAlS catalysts.

3.3.2. Laser Raman spectra of silica supported molybdenum oxide catalysts

Fig. 10 show a comparison of the Laser Raman spectra obtained for the xMoSi samples, with those exhibited by silica and molybdenum oxide. At low loading (5MoSi), the presence of MoO₃ as a dispersed on the surface of 5MoSi exhibits two small vibrational bands at 816 and 992 cm⁻¹ of molybdena. The appeared bands indicate that they have small effect on the formation of molybdenum oxide (Boer et al., 1991). By increasing MoO₃ loaded for 10 wt% become more intensive with increasing of intensity and new bands appears at 216 and 241 cm⁻¹. The new bands can be assigned to molybdenyl bending as isolated and the Mo=O stretching mod shifts from 281 to 289 cm⁻¹ and at 666 cm⁻¹ (the shift and the change of band shape of the molybdenyl vibration can be interpreted as an indication that the two bands belong to at least two different contribution of the present molybdenum oxide species) and the presence of two sharp bands indicates that the surface molybdenum oxide species (Thielemann et al., 2011; McEvoy et al., 2005). At higher loading levels the characteristic bands of crystalline MoO₃ are clearly observed.

The Raman spectra of the sulfated, xMoSiS catalysts (Fig. 10) display similar to the spectra of MoSi with differences in an intensity absorption exhibits increase in absorption and sharper with increase loading of xMoSiS in range 816 and 992 cm⁻¹ indicates increase in formation of MoO₃ crystalline. Hence, the above IR spectral results are in a good agreement with the XRD results. By increasing the loading level of molybdenum oxide on alumina the crystallinity of MoO₃ increases dramatically. All the results discussed above clearly shows the dispersion capacity of molybdenum oxide from MoAl is larger compared with molybdenum oxide from MoAl.

The Laser Raman Spectroscopy results of xMoAl catalysts indicated that there are at least three different molybdenum oxide species (tetrahedral and octahedral coordinated surface species as well as a crystalline MoO₃ phase) present on the Al₂O₃ surface under ambient conditions and that their relative concentrations depend on the molybdenum oxide coverage, additionally Laser Raman Spectroscopy of xMoAl catalysts indicated that the higher intensity absorption (sharp) increase with increasing of loading level of Mo (xMoSi and xMoSiS) which indicate the formation of crystalline MoO₃.

4. Conclusions

XRD results of alumina supported molybdenum oxide exhibits the crystallinity of catalysts and particle size are found to be increase with increasing the loading level of molybdenum oxide. Similar effect was observed in case of sulfated alumina supported molybdenum oxide (xMoAlS). XRD results of silica supported molybdenum oxide exhibits high dispersion at low loading level (3 and 5 wt%) whereas at higher loading levels the crystallinity and particle size increase with increasing loading level of molybdenum oxide. Sulfate catalysts of (xMoO₃) show the similar effect. The FT-IR spectroscopic results were revealed that the dispersion capacity of molybdenum oxide from MoAl is larger than of molybdenum oxide from MoAl. Whereas FT-IR spectra of MoSi and MoS catalysts show the dispersion capacity of molybdenum oxide from MoSiS is bigger than of molybdenum oxide from MoSi. The Laser Raman Spectroscopy results of xMoAl catalysts clearly show the formation of molybdenum oxide of higher bond order in xMoAl catalysts than in xMoAl catalysts. The laser Raman spectroscopy studies demonstrated that there are at least three different molybdenum oxide species (tetrahedral and octahedral coordinated surface species as well as a crystalline MoO₃ phase) present on the Al₂O₃ surface under ambient conditions and that their relative concentrations depend on the molybdenum oxide coverage, additionally Laser Raman Spectroscopy of xMoAl catalysts indicated that the higher intensity absorption (sharp) increase with increasing of loading level of Mo (xMoSi and xMoSiS) which indicate the formation of crystalline MoO₃.

References

